Tag Archives: radial ball bearing

China Custom 1688 Spare Parts Stainless Steel Bearing 6004 Zz Deep Groove Ball Miniature Bearing Radial Spherical Plain Bearing Slewing Bearing bearing driver

Product Description

 

Product Description

Item No.:  SS6004ZZ

Type: Deep Groove Ball Bearing

Material: Stainless Steel(AISI440C/9Cr18)

Bore diameter: 20mm Outer diameter : 42mm Width(Height/Thickness): 12mm

Size: 20*42*12mm

Dynamic load C0: 9.40 Static load C0r: 5.05 Grease: 18000 Oil: 21000

Cage(retainer): Ribbon Cage(SPCC/T8)

Closures: 2 Metal Shields(SPCC)

Balls: Stainless Steel Balls

Lubrication: Grease

 

 

Item No. Bore diameter
(mm)
Outer diameter
(mm)
Width(Height/Thickness)
(mm)
Closures
SS6004ZZ 20 42 12 2 Metal Shields(SPCC)

 

Detailed Photos

SS6004ZZ

 

 

Our Advantages

 Compared with ordinary bearings, stainless steel bearings have distinct material advantage because stainless steel bearings
have more wide application than ordinary bearings. In rusty and corrosive environment, the cost performance of stainless steel
bearings is outstanding specially.

 Stainless Steel Bearing:
1. stronger anti-rust property and anti-corrosion property.
2. CZPT to serve under -60ºC~+300ºC.
3. resist humidity and corrosion caused by other media.
4. has a deep bearing raceway groove, and the fit between the bearing raceway and the ball is extremely high.
5. high mechanical strength and large loading capacity.

 Our company provides high-precision homemade bearing of ordinary material, including deep groove ball bearing and full complement cylindrical roller bearings.
 The material refers to high-quality bearing steel, thermal treatment technology is put under strict control, and it is CZPT to carry out cryogenic treatment. And full complement cylindrical roller bearings adopts advanced roller CZPT for thermal treatment. Other technologies are all processed by full-automatic and semiautomatic equipment, and the production technology and quality control are arranged as per P5 precision. It products widely support home and abroad manufacturers of electric tools, mechanical equipment, automobile components, etc.
 

Manufacture Equipment

 

Company Profile

HangZhou WOLEE INDUSTRIAL CO.,LTD

 HangZhou WOLEE induststial Co., Ltd. was founded in 2015. It is a professional company which engages in import and export of industrial components and is a professional production base with joint stocks.

 The company mainly operates bearings and other industrial components such as chain, CZPT rail, gear and micro gearbox. Its products are widely used in the fields of metallurgy, mining, papermaking, petrochemical, power, railway, aviation, cement, textile, machinery, etc., it has lots of clients among these fields and has accumulated rich experience to meet different demands of all sectors. At present, its trade scale expands increasingly, its clients are all across the world, and it wins the trust of home and abroad clients by virtue of good reputation.

 The company adheres to the tenet of “people first, quality first, credit first and reputation first” and provides each client with top service.

 It heartily hopes to join hands with you to create a wonderful world.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Single
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Order Sample

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

ball bearing

What are the Challenges Associated with Noise Reduction in Ball Bearings?

Noise reduction in ball bearings is a crucial consideration, especially in applications where noise levels must be minimized for operational efficiency and user comfort. While ball bearings are designed to operate smoothly, there are several challenges associated with reducing noise in their operation:

  • Vibration:

Vibration generated by the movement of rolling elements and raceways can lead to noise. Even minor irregularities in bearing components or the mounting system can cause vibration that translates into audible noise.

  • Bearing Type and Design:

The type and design of the ball bearing can impact noise generation. For example, deep groove ball bearings are known for their quiet operation, while angular contact bearings can generate more noise due to their higher contact angles.

  • Lubrication:

Improper or inadequate lubrication can result in increased friction and wear, leading to noise. Choosing the right lubricant and maintaining proper lubrication levels are essential for reducing noise in ball bearings.

  • Bearing Clearance and Preload:

Incorrect clearance or preload settings can lead to noise issues. Excessive clearance or inadequate preload can cause the rolling elements to impact the raceways, resulting in noise during rotation.

  • Material and Manufacturing Quality:

The quality of materials and manufacturing processes can affect noise levels. Inconsistent or low-quality materials, improper heat treatment, or manufacturing defects can lead to noise generation during operation.

  • Surface Finish:

The surface finish of the rolling elements and raceways can impact noise. Rough surfaces can generate more noise due to increased friction and potential irregularities.

  • Sealing and Shielding:

Seals and shields that protect bearings can influence noise levels. While they are necessary for contamination prevention, they can also cause additional friction and generate noise.

  • Operating Conditions:

External factors such as temperature, speed, and load can influence noise levels. High speeds or heavy loads can amplify noise due to increased stress on the bearing components.

  • Wear and Deterioration:

As ball bearings wear over time, noise levels can increase. Worn components or inadequate lubrication can lead to more significant noise issues as the bearing operates.

To address these challenges and reduce noise in ball bearings, manufacturers and engineers employ various techniques, such as optimizing design, selecting suitable bearing types, using proper lubrication, maintaining accurate preload settings, and ensuring high-quality materials and manufacturing processes. Noise reduction efforts are essential to improve overall product quality, meet noise regulations, and enhance user experience in various applications.

ball bearing

How do Miniature Ball Bearings Differ from Standard-sized Ones, and Where are They Commonly Used?

Miniature ball bearings, as the name suggests, are smaller in size compared to standard-sized ball bearings. They have distinct characteristics and are designed to meet the unique requirements of applications that demand compactness, precision, and efficient rotation in confined spaces. Here’s how miniature ball bearings differ from standard-sized ones and where they are commonly used:

  • Size:

The most noticeable difference is their size. Miniature ball bearings typically have outer diameters ranging from a few millimeters to around 30 millimeters, while standard-sized ball bearings have larger dimensions suitable for heavier loads and higher speeds.

  • Load Capacity:

Due to their smaller size, miniature ball bearings have lower load-carrying capacities compared to standard-sized bearings. They are designed for light to moderate loads and are often used in applications where precision and compactness are prioritized over heavy load support.

  • Precision:

Miniature ball bearings are known for their high precision and accuracy. They are manufactured to tighter tolerances, making them suitable for applications requiring precise motion control and low levels of vibration.

  • Speed:

Miniature ball bearings can achieve higher speeds than standard-sized bearings due to their smaller size and lower mass. This makes them ideal for applications involving high-speed rotation.

  • Friction and Efficiency:

Miniature ball bearings generally have lower friction due to their smaller contact area. This contributes to higher efficiency and reduced heat generation in applications that require smooth and efficient motion.

  • Applications:

Miniature ball bearings find applications in various industries and sectors:

  • Electronics and Consumer Devices:

They are used in small motors, computer disk drives, printers, and miniature fans, where space is limited but precise motion is essential.

  • Medical and Dental Equipment:

Miniature bearings are used in medical devices such as surgical instruments, dental handpieces, and diagnostic equipment due to their precision and compactness.

  • Robotics and Automation:

Miniature ball bearings are integral to robotic arms, miniature conveyors, and automation systems, enabling precise movement in confined spaces.

  • Aerospace and Defense:

They are used in applications like UAVs (drones), aerospace actuators, and satellite components where size and weight constraints are critical.

  • Optics and Instrumentation:

Miniature bearings play a role in optical instruments, cameras, and measuring devices, providing smooth rotation and accurate positioning.

Overall, miniature ball bearings are specialized components designed for applications where space, precision, and efficient rotation are paramount. Their compactness and high precision make them crucial in various industries requiring reliable motion control in limited spaces.

ball bearing

What are the Primary Benefits of Using Ball Bearings in Machinery and Equipment?

Ball bearings offer several primary benefits when used in machinery and equipment. Their design and functionality provide advantages that contribute to the efficient and reliable operation of various applications. Here are the key benefits:

  • Reduced Friction:

One of the primary benefits of ball bearings is their ability to minimize friction between moving parts. The rolling motion of the balls reduces the contact area and sliding friction, leading to smoother operation and less energy loss due to frictional heating.

  • Efficient Load Support:

Ball bearings are engineered to support both radial and axial loads, making them versatile for applications with multidirectional forces. This load-bearing capability allows machinery to handle different types of loads while maintaining performance and stability.

  • Smooth Rotation:

Ball bearings enable smooth and precise rotational movement. The rolling motion of the balls provides consistent motion with minimal resistance, ensuring that machinery operates smoothly and without jerks.

  • High-Speed Capability:

Due to their low friction and efficient rolling action, ball bearings are suitable for high-speed applications. They allow machinery and equipment to achieve and maintain high rotational speeds without excessive wear or heat buildup.

  • Reduced Wear and Maintenance:

The reduced friction in ball bearings leads to lower wear on components. This results in longer service intervals and reduced maintenance requirements, saving both time and maintenance costs.

  • Energy Efficiency:

By minimizing friction and reducing energy losses, ball bearings contribute to the overall energy efficiency of machinery. This is particularly important in applications where energy consumption is a concern.

  • Versatility:

Ball bearings come in various types, sizes, and configurations, allowing them to be used in a wide range of machinery and equipment. They can be customized to suit specific application requirements.

  • Reliability and Longevity:

Ball bearings are designed to withstand heavy loads and harsh operating conditions. Their durability and resistance to wear ensure reliable performance and an extended operational life.

  • Quiet Operation:

Ball bearings contribute to quiet machinery operation due to the smooth rolling motion of the balls. This is particularly important in applications where noise reduction is a consideration.

In summary, the primary benefits of using ball bearings in machinery and equipment include reduced friction, efficient load support, smooth rotation, high-speed capability, reduced wear and maintenance, energy efficiency, versatility, reliability, and quiet operation. These benefits collectively enhance the performance and longevity of machinery across various industries.

China Custom 1688 Spare Parts Stainless Steel Bearing 6004 Zz Deep Groove Ball Miniature Bearing Radial Spherical Plain Bearing Slewing Bearing   bearing driverChina Custom 1688 Spare Parts Stainless Steel Bearing 6004 Zz Deep Groove Ball Miniature Bearing Radial Spherical Plain Bearing Slewing Bearing   bearing driver
editor by CX 2024-05-16

China high quality Precise Axial and Radial Rigidity 7020 Single Angular Contact Ball Bearing deep groove ball bearing

Product Description

7571 Single Angular Contact Ball Bearing Introduction:Angular contact ball bearings are specialized types of bearings designed to support both radial and axial loads simultaneously. And they are versatile components known for their ability to support combined radial and axial loads, making them essential in a wide range of mechanical systems and machinery.
7571 Single Angular Contact Ball Bearing key features and application:

  1. Construction: Angular contact ball bearings typically consist of an inner ring, an outer ring, a cage (or separator), and rows of balls. The inner and outer rings have raceways, while the balls are positioned between them.

  2. Contact Angle: Unlike deep groove ball bearings, which have a contact angle of 0°, angular contact ball bearings have a contact angle, usually between 15° and 40°. This angle allows them to support axial loads in addition to radial loads.

  3. Types: Angular contact ball bearings come in several configurations, including single-row, double-row, and four-point contact bearings. Single-row bearings can accommodate axial loads in 1 direction, while double-row bearings can handle axial loads in both directions.

  4. Preload: To optimize performance, angular contact ball bearings may be preloaded during installation. Preload applies a slight internal load to the bearings, which helps eliminate play and improve rigidity.

  5. High-Speed Capability: Angular contact ball bearings are capable of operating at high speeds due to their design, which reduces friction and heat generation.

  6. Applications: These bearings are commonly used in various industries, including automotive, aerospace, machine tooling, and robotics. They are suitable for applications such as wheel hubs, electric motors, pumps, and gearboxes, where both radial and axial loads are present.

  7. Sealing Options: Depending on the application requirements, angular contact ball bearings may come with different sealing options, such as shields or seals, to protect against contaminants and retain lubrication.

7571 Single Angular Contact Ball Bearing Display:

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 15°
Aligning: Aligning Bearing
Separated: Unseparated
Rows Number: Single
Load Direction: Thrust Bearing
Material: Bearing Steel
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

What are the Materials Typically Used in Manufacturing Ball Bearings and Their Advantages?

Ball bearings are manufactured using a variety of materials, each chosen for its specific properties and advantages in various applications. Here are some commonly used materials in ball bearing manufacturing and their respective benefits:

  • High-Carbon Chrome Steel (AISI 52100):

This is the most common material used for ball bearing manufacturing. It offers excellent hardness, wear resistance, and fatigue strength. High-carbon chrome steel bearings are suitable for a wide range of applications, from industrial machinery to automotive components.

  • Stainless Steel (AISI 440C, AISI 304, AISI 316):

Stainless steel bearings are corrosion-resistant and suitable for applications where moisture, chemicals, or exposure to harsh environments are concerns. AISI 440C offers high hardness and corrosion resistance, while AISI 304 and AISI 316 provide good corrosion resistance and are often used in food and medical industries.

  • Ceramic:

Ceramic bearings use silicon nitride (Si3N4) or zirconia (ZrO2) balls. Ceramic materials offer high stiffness, low density, and excellent resistance to corrosion and heat. Ceramic bearings are commonly used in high-speed and high-temperature applications, such as in aerospace and racing industries.

  • Plastic (Polyamide, PEEK):

Plastic bearings are lightweight and offer good corrosion resistance. Polyamide bearings are commonly used due to their low friction and wear properties. Polyether ether ketone (PEEK) bearings provide high-temperature resistance and are suitable for demanding environments.

  • Bronze:

Bronze bearings are often used in applications where self-lubrication is required. Bronze has good thermal conductivity and wear resistance. Bearings made from bronze are commonly used in machinery requiring frequent starts and stops.

  • Hybrid Bearings:

Hybrid bearings combine steel rings with ceramic balls. These bearings offer a balance between the advantages of both materials, such as improved stiffness and reduced weight. Hybrid bearings are used in applications where high speeds and low friction are essential.

  • Specialty Alloys:

For specific applications, specialty alloys may be used to meet unique requirements. For example, bearings used in extreme temperatures or corrosive environments may be made from materials like titanium or hastelloy.

  • Coated Bearings:

Bearings may also be coated with thin layers of materials like diamond-like carbon (DLC) or other coatings to enhance performance, reduce friction, and improve wear resistance.

The choice of material depends on factors such as application requirements, operating conditions, load, speed, and environmental factors. Selecting the right material is essential for ensuring optimal bearing performance, longevity, and reliability in diverse industries and applications.

ball bearing

How do Temperature and Environmental Conditions Affect the Performance of Ball Bearings?

Temperature and environmental conditions have a significant impact on the performance and longevity of ball bearings. The operating environment can influence factors such as lubrication effectiveness, material properties, and overall bearing behavior. Here’s how temperature and environmental conditions affect ball bearing performance:

  • Lubrication:

Temperature variations can affect the viscosity and flow characteristics of lubricants. Extreme temperatures can cause lubricants to become too thin or too thick, leading to inadequate lubrication and increased friction. In high-temperature environments, lubricants can degrade, reducing their effectiveness.

  • Material Properties:

Temperature changes can alter the material properties of the bearing components. High temperatures can lead to thermal expansion, affecting bearing clearances and potentially causing interference between components. Extreme cold temperatures can make materials more brittle and prone to fracture.

  • Clearance Changes:

Temperature fluctuations can cause changes in the internal clearance of ball bearings. For instance, at high temperatures, materials expand, leading to increased clearance. This can affect bearing performance, load distribution, and overall stability.

  • Corrosion and Contamination:

Harsh environmental conditions, such as exposure to moisture, chemicals, or abrasive particles, can lead to corrosion and contamination of bearing components. Corrosion weakens the material, while contamination accelerates wear and reduces bearing life.

  • Thermal Stress:

Rapid temperature changes can result in thermal stress within the bearing components. Differential expansion and contraction between the inner and outer rings can lead to stress and distortion, affecting precision and bearing integrity.

  • Noise and Vibration:

Temperature-related changes in material properties and internal clearances can influence noise and vibration levels. Extreme temperatures can lead to increased noise generation and vibration, affecting the overall operation of machinery.

  • Lubricant Degradation:

Environmental factors like humidity, dust, and contaminants can lead to premature lubricant degradation. Oxidation, moisture absorption, and the presence of foreign particles can compromise the lubricant’s performance and contribute to increased friction and wear.

  • Seal Effectiveness:

Seals and shields that protect bearings from contaminants can be affected by temperature fluctuations. Extreme temperatures can lead to seal hardening, cracking, or deformation, compromising their effectiveness in preventing contamination.

  • Choosing Appropriate Bearings:

When selecting ball bearings for specific applications, engineers must consider the expected temperature and environmental conditions. High-temperature bearings, bearings with specialized coatings, and those with enhanced sealing mechanisms may be necessary to ensure reliable performance.

Overall, understanding the impact of temperature and environmental conditions on ball bearing performance is crucial for proper bearing selection, maintenance, and ensuring optimal operation in diverse industries and applications.

ball bearing

Can you Explain the Various Types of Ball Bearings and their Specific Use Cases?

Ball bearings come in various types, each designed to meet specific application requirements. Here’s an overview of the different types of ball bearings and their specific use cases:

  • Deep Groove Ball Bearings:

Deep groove ball bearings are the most common and versatile type. They have a deep raceway that allows them to handle both radial and axial loads. They are used in a wide range of applications, including electric motors, household appliances, automotive components, and industrial machinery.

  • Angular Contact Ball Bearings:

Angular contact ball bearings have a contact angle that enables them to handle both radial and axial loads at specific angles. They are suitable for applications where combined loads or thrust loads need to be supported, such as in machine tool spindles, pumps, and agricultural equipment.

  • Self-Aligning Ball Bearings:

Self-aligning ball bearings have two rows of balls and are designed to accommodate misalignment between the shaft and the housing. They are used in applications where shaft deflection or misalignment is common, such as conveyor systems, textile machinery, and paper mills.

  • Thrust Ball Bearings:

Thrust ball bearings are designed to support axial loads in one direction. They are commonly used in applications where axial loads need to be supported, such as in automotive transmissions, steering systems, and crane hooks.

  • Single-Row vs. Double-Row Bearings:

Single-row ball bearings have a single set of balls and are suitable for moderate load and speed applications. Double-row ball bearings have two sets of balls and offer higher load-carrying capacity. Double-row designs are used in applications such as machine tool spindles and printing presses.

  • Miniature and Instrument Ball Bearings:

Miniature ball bearings are smaller in size and are used in applications with limited space and lower load requirements. They are commonly used in small electric motors, medical devices, and precision instruments.

  • Max-Type and Conrad Bearings:

Max-type ball bearings have a larger number of balls to increase load-carrying capacity. Conrad bearings have fewer balls and are used in applications with moderate loads and speeds.

  • High-Precision Ball Bearings:

High-precision ball bearings are designed for applications where accuracy and precision are critical, such as machine tool spindles, aerospace components, and optical instruments.

  • High-Speed Ball Bearings:

High-speed ball bearings are engineered to minimize friction and accommodate rapid rotation. They are used in applications such as dental handpieces, turbochargers, and centrifuges.

In summary, the various types of ball bearings are tailored to different application requirements, including load type, direction, speed, and environmental conditions. Selecting the appropriate type of ball bearing ensures optimal performance and longevity in specific applications.

China high quality Precise Axial and Radial Rigidity 7020 Single Angular Contact Ball Bearing   deep groove ball bearingChina high quality Precise Axial and Radial Rigidity 7020 Single Angular Contact Ball Bearing   deep groove ball bearing
editor by CX 2024-05-15

China OEM Stainless Steel Radial Joint Spherical Plain Ball Bearing Ge15c Ge17c Ge20c bearing bronze

Product Description

Model GEG 
Material Stainless Steel / PTFE
Inner diameter 12-320 mm
Outer diameter 22-520 mm
ball width  12-320 mm
Model Available GE, GEES2RS, GAC, GEC, GEG, GEZ, GEEM, GET, ……
Application Agricultural machinery, Shock absorber, etc
Package Tube, carton box, wooden box, pallet
Delivery time 1 day for sample, 3-5 day for medium order, 10-20 day for big order quantity
OEM Accept
Payment terms TT, L.C, D/A, D/P, Western Union, Paypal

Company Profile

 

In order to meet the needs of the masses of customers and improve the market competitiveness of our company,
we can provide OEM service according to our customers′ Needs. We have gained ISO9001 certificate, CE certificate,
GOST certificate and SGS certificate. Our target is to carry out the strategic investment along with the development
of market and need of new products. With our strategic, excellent products, top technology and outstanding service,
we sincerely expect cooperation with more customers and friends for a better future. Our main products include
spherical roller bearing, deep groove ball bearings, cylindrical roller bearings, spherical roller bearings, needle roller
bearings, ball bearing units, water pump bearings, automobile bearing, linear motion bearing, oil-less bearings,
bush and self-lubricating bearings, and non-standard bearings. Also, we supply bearings to our domestic peeling
machine factory and the machine exported to India, Malaysia and Russia, no any complaint from customer until now.

“zero defect, zero complaints” as the quality objective.

FAQ

Q: Are you trading company or manufacturer ?

A: We are a trading company specializing in exporting bearings.

Q: How long is your delivery time?

A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the 

goods are not in stock, it is according to quantity.

Q: Do you provide samples ? is it free or extra ?

A: Yes, we could offer the sample for free charge

Q.You provide free consultation service?

Yes, before, during and after order, anytime.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Element: Single Row
Material: Bearing Steel
Load Direction: Axial Bearing
Rod End: General
Model: GEH
Application: Engineering Hydraulic Cylinder, Water Conservancy Machinery
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

How does Preload Affect the Performance and Efficiency of Ball Bearings?

Preload is a crucial factor in ball bearing design that significantly impacts the performance, efficiency, and overall behavior of the bearings in various applications. Preload refers to the intentional axial force applied to the bearing’s rolling elements before it is mounted. This force eliminates internal clearance and creates contact between the rolling elements and the raceways. Here’s how preload affects ball bearing performance:

  • Reduction of Internal Clearance:

Applying preload reduces the internal clearance between the rolling elements and the raceways. This eliminates play within the bearing, ensuring that the rolling elements are in constant contact with the raceways. This reduced internal clearance enhances precision and reduces vibrations during operation.

  • Increased Stiffness:

Preloaded bearings are stiffer due to the elimination of internal clearance. This increased stiffness improves the bearing’s ability to handle axial and radial loads with higher accuracy and minimal deflection.

  • Minimized Axial Play:

Preload minimizes or eliminates axial play within the bearing. This is especially important in applications where axial movement needs to be minimized, such as machine tool spindles and precision instruments.

  • Enhanced Rigidity:

The stiffness resulting from preload enhances the bearing’s rigidity, making it less susceptible to deformation under load. This is critical for maintaining precision and accuracy in applications that require minimal deflection.

  • Reduction in Ball Slippage:

Preload reduces the likelihood of ball slippage within the bearing, ensuring consistent contact between the rolling elements and the raceways. This leads to improved efficiency and better load distribution.

  • Improved Running Accuracy:

Preloading enhances the running accuracy of the bearing, ensuring that it maintains precise rotational characteristics even under varying loads and speeds. This is essential for applications requiring high accuracy and repeatability.

  • Optimized Performance at High Speeds:

Preload helps prevent skidding and slipping of the rolling elements during high-speed operation. This ensures that the bearing remains stable, reducing the risk of noise, vibration, and premature wear.

  • Impact on Friction and Heat Generation:

While preload reduces internal clearance and friction, excessive preload can lead to higher friction and increased heat generation. A balance must be struck between optimal preload and minimizing friction-related issues.

  • Application-Specific Considerations:

The appropriate amount of preload depends on the application’s requirements, such as load, speed, accuracy, and operating conditions. Over-preloading can lead to increased stress and premature bearing failure, while under-preloading may result in inadequate rigidity and reduced performance.

Overall, preload plays a critical role in optimizing the performance, accuracy, and efficiency of ball bearings. Engineers must carefully determine the right preload level for their specific applications to achieve the desired performance characteristics and avoid potential issues related to overloading or inadequate rigidity.

ball bearing

How do Miniature Ball Bearings Differ from Standard-sized Ones, and Where are They Commonly Used?

Miniature ball bearings, as the name suggests, are smaller in size compared to standard-sized ball bearings. They have distinct characteristics and are designed to meet the unique requirements of applications that demand compactness, precision, and efficient rotation in confined spaces. Here’s how miniature ball bearings differ from standard-sized ones and where they are commonly used:

  • Size:

The most noticeable difference is their size. Miniature ball bearings typically have outer diameters ranging from a few millimeters to around 30 millimeters, while standard-sized ball bearings have larger dimensions suitable for heavier loads and higher speeds.

  • Load Capacity:

Due to their smaller size, miniature ball bearings have lower load-carrying capacities compared to standard-sized bearings. They are designed for light to moderate loads and are often used in applications where precision and compactness are prioritized over heavy load support.

  • Precision:

Miniature ball bearings are known for their high precision and accuracy. They are manufactured to tighter tolerances, making them suitable for applications requiring precise motion control and low levels of vibration.

  • Speed:

Miniature ball bearings can achieve higher speeds than standard-sized bearings due to their smaller size and lower mass. This makes them ideal for applications involving high-speed rotation.

  • Friction and Efficiency:

Miniature ball bearings generally have lower friction due to their smaller contact area. This contributes to higher efficiency and reduced heat generation in applications that require smooth and efficient motion.

  • Applications:

Miniature ball bearings find applications in various industries and sectors:

  • Electronics and Consumer Devices:

They are used in small motors, computer disk drives, printers, and miniature fans, where space is limited but precise motion is essential.

  • Medical and Dental Equipment:

Miniature bearings are used in medical devices such as surgical instruments, dental handpieces, and diagnostic equipment due to their precision and compactness.

  • Robotics and Automation:

Miniature ball bearings are integral to robotic arms, miniature conveyors, and automation systems, enabling precise movement in confined spaces.

  • Aerospace and Defense:

They are used in applications like UAVs (drones), aerospace actuators, and satellite components where size and weight constraints are critical.

  • Optics and Instrumentation:

Miniature bearings play a role in optical instruments, cameras, and measuring devices, providing smooth rotation and accurate positioning.

Overall, miniature ball bearings are specialized components designed for applications where space, precision, and efficient rotation are paramount. Their compactness and high precision make them crucial in various industries requiring reliable motion control in limited spaces.

ball bearing

Can you Explain the Various Types of Ball Bearings and their Specific Use Cases?

Ball bearings come in various types, each designed to meet specific application requirements. Here’s an overview of the different types of ball bearings and their specific use cases:

  • Deep Groove Ball Bearings:

Deep groove ball bearings are the most common and versatile type. They have a deep raceway that allows them to handle both radial and axial loads. They are used in a wide range of applications, including electric motors, household appliances, automotive components, and industrial machinery.

  • Angular Contact Ball Bearings:

Angular contact ball bearings have a contact angle that enables them to handle both radial and axial loads at specific angles. They are suitable for applications where combined loads or thrust loads need to be supported, such as in machine tool spindles, pumps, and agricultural equipment.

  • Self-Aligning Ball Bearings:

Self-aligning ball bearings have two rows of balls and are designed to accommodate misalignment between the shaft and the housing. They are used in applications where shaft deflection or misalignment is common, such as conveyor systems, textile machinery, and paper mills.

  • Thrust Ball Bearings:

Thrust ball bearings are designed to support axial loads in one direction. They are commonly used in applications where axial loads need to be supported, such as in automotive transmissions, steering systems, and crane hooks.

  • Single-Row vs. Double-Row Bearings:

Single-row ball bearings have a single set of balls and are suitable for moderate load and speed applications. Double-row ball bearings have two sets of balls and offer higher load-carrying capacity. Double-row designs are used in applications such as machine tool spindles and printing presses.

  • Miniature and Instrument Ball Bearings:

Miniature ball bearings are smaller in size and are used in applications with limited space and lower load requirements. They are commonly used in small electric motors, medical devices, and precision instruments.

  • Max-Type and Conrad Bearings:

Max-type ball bearings have a larger number of balls to increase load-carrying capacity. Conrad bearings have fewer balls and are used in applications with moderate loads and speeds.

  • High-Precision Ball Bearings:

High-precision ball bearings are designed for applications where accuracy and precision are critical, such as machine tool spindles, aerospace components, and optical instruments.

  • High-Speed Ball Bearings:

High-speed ball bearings are engineered to minimize friction and accommodate rapid rotation. They are used in applications such as dental handpieces, turbochargers, and centrifuges.

In summary, the various types of ball bearings are tailored to different application requirements, including load type, direction, speed, and environmental conditions. Selecting the appropriate type of ball bearing ensures optimal performance and longevity in specific applications.

China OEM Stainless Steel Radial Joint Spherical Plain Ball Bearing Ge15c Ge17c Ge20c   bearing bronzeChina OEM Stainless Steel Radial Joint Spherical Plain Ball Bearing Ge15c Ge17c Ge20c   bearing bronze
editor by CX 2024-05-07

China wholesaler Custom Ball Joint Radial Spherical Plain Bearing with Good quality

Product Description

Custom Ball Joint Radial Spherical Plain Bearing
 

 

Product Type:

TCB701

Application :

Automobile Shock Absorber ,Engineeeing Hydraulic Cyliner etc.

Material:

Steel 

In addition to the standard product catalog is displayed, we provide non-standard product or to order according to customer requirements.

 

Packing & Shipping

Packing Details:
 

1. Inner Packing
For small products: 100pcs-200pcs per sealed plastic bag.For bigger products: 2pcs-10pcs per plastic film roller (depends on the product size)

2. Outer Packing&Shipment Packing

8pcs-300pcs per carton (depends on the product size)
18-24 cartons per wood case or pallet, shockproof and safe for transportation.

 

 

Company Profile

 

 

 

 

Our Factory

 

 

 

 

 

 

 

FAQ

Q: Are you trading company or manufacturer?
A: Our management is focused on exporting activities for more than 10 years and we have our own bushing factory. TEHCO is always professional and reliable. Our advantages are multiple resource integration, strong quality assurance and excellent service level. We are always responsible for our products.

Q: Hong long is your delivery time?
A: Generally 10-25 days after order. It depends on the quantity.

Q: Do you produce samples? Is it free or extra?
A: For standard products, we produce samples free of charge for our customers. And the express costs will be burdened by the customer, but can be returned after the order is placed.

Q: How to ensure the quality?
A: We produce as per the confirmed technology or drawings for each order for our customers. And our factory has a strict quality control system. We inspect goods during production according to a certain frequency and we also perform the final inspection before the goods are packed.

Q: Do you like to serve the customers only with small orders?
A: We are always glad to grow up together with all our customers whatever big or small.

We hope our customers become stronger and stronger to be with us.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Customized: Customized
Certification: ISO, ISO 9001:2015
Standard Parts: Standard and Non Standard
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

ball bearing

What are the Materials Typically Used in Manufacturing Ball Bearings and Their Advantages?

Ball bearings are manufactured using a variety of materials, each chosen for its specific properties and advantages in various applications. Here are some commonly used materials in ball bearing manufacturing and their respective benefits:

  • High-Carbon Chrome Steel (AISI 52100):

This is the most common material used for ball bearing manufacturing. It offers excellent hardness, wear resistance, and fatigue strength. High-carbon chrome steel bearings are suitable for a wide range of applications, from industrial machinery to automotive components.

  • Stainless Steel (AISI 440C, AISI 304, AISI 316):

Stainless steel bearings are corrosion-resistant and suitable for applications where moisture, chemicals, or exposure to harsh environments are concerns. AISI 440C offers high hardness and corrosion resistance, while AISI 304 and AISI 316 provide good corrosion resistance and are often used in food and medical industries.

  • Ceramic:

Ceramic bearings use silicon nitride (Si3N4) or zirconia (ZrO2) balls. Ceramic materials offer high stiffness, low density, and excellent resistance to corrosion and heat. Ceramic bearings are commonly used in high-speed and high-temperature applications, such as in aerospace and racing industries.

  • Plastic (Polyamide, PEEK):

Plastic bearings are lightweight and offer good corrosion resistance. Polyamide bearings are commonly used due to their low friction and wear properties. Polyether ether ketone (PEEK) bearings provide high-temperature resistance and are suitable for demanding environments.

  • Bronze:

Bronze bearings are often used in applications where self-lubrication is required. Bronze has good thermal conductivity and wear resistance. Bearings made from bronze are commonly used in machinery requiring frequent starts and stops.

  • Hybrid Bearings:

Hybrid bearings combine steel rings with ceramic balls. These bearings offer a balance between the advantages of both materials, such as improved stiffness and reduced weight. Hybrid bearings are used in applications where high speeds and low friction are essential.

  • Specialty Alloys:

For specific applications, specialty alloys may be used to meet unique requirements. For example, bearings used in extreme temperatures or corrosive environments may be made from materials like titanium or hastelloy.

  • Coated Bearings:

Bearings may also be coated with thin layers of materials like diamond-like carbon (DLC) or other coatings to enhance performance, reduce friction, and improve wear resistance.

The choice of material depends on factors such as application requirements, operating conditions, load, speed, and environmental factors. Selecting the right material is essential for ensuring optimal bearing performance, longevity, and reliability in diverse industries and applications.

ball bearing

How do Temperature and Environmental Conditions Affect the Performance of Ball Bearings?

Temperature and environmental conditions have a significant impact on the performance and longevity of ball bearings. The operating environment can influence factors such as lubrication effectiveness, material properties, and overall bearing behavior. Here’s how temperature and environmental conditions affect ball bearing performance:

  • Lubrication:

Temperature variations can affect the viscosity and flow characteristics of lubricants. Extreme temperatures can cause lubricants to become too thin or too thick, leading to inadequate lubrication and increased friction. In high-temperature environments, lubricants can degrade, reducing their effectiveness.

  • Material Properties:

Temperature changes can alter the material properties of the bearing components. High temperatures can lead to thermal expansion, affecting bearing clearances and potentially causing interference between components. Extreme cold temperatures can make materials more brittle and prone to fracture.

  • Clearance Changes:

Temperature fluctuations can cause changes in the internal clearance of ball bearings. For instance, at high temperatures, materials expand, leading to increased clearance. This can affect bearing performance, load distribution, and overall stability.

  • Corrosion and Contamination:

Harsh environmental conditions, such as exposure to moisture, chemicals, or abrasive particles, can lead to corrosion and contamination of bearing components. Corrosion weakens the material, while contamination accelerates wear and reduces bearing life.

  • Thermal Stress:

Rapid temperature changes can result in thermal stress within the bearing components. Differential expansion and contraction between the inner and outer rings can lead to stress and distortion, affecting precision and bearing integrity.

  • Noise and Vibration:

Temperature-related changes in material properties and internal clearances can influence noise and vibration levels. Extreme temperatures can lead to increased noise generation and vibration, affecting the overall operation of machinery.

  • Lubricant Degradation:

Environmental factors like humidity, dust, and contaminants can lead to premature lubricant degradation. Oxidation, moisture absorption, and the presence of foreign particles can compromise the lubricant’s performance and contribute to increased friction and wear.

  • Seal Effectiveness:

Seals and shields that protect bearings from contaminants can be affected by temperature fluctuations. Extreme temperatures can lead to seal hardening, cracking, or deformation, compromising their effectiveness in preventing contamination.

  • Choosing Appropriate Bearings:

When selecting ball bearings for specific applications, engineers must consider the expected temperature and environmental conditions. High-temperature bearings, bearings with specialized coatings, and those with enhanced sealing mechanisms may be necessary to ensure reliable performance.

Overall, understanding the impact of temperature and environmental conditions on ball bearing performance is crucial for proper bearing selection, maintenance, and ensuring optimal operation in diverse industries and applications.

ball bearing

What Factors should be Considered when Selecting a Ball Bearing for a Particular Application?

Selecting the right ball bearing for a specific application involves careful consideration of various factors to ensure optimal performance, longevity, and reliability. Here are the key factors that should be taken into account:

  • Load Type and Magnitude:

Determine the type of load (radial, axial, or combined) and the magnitude of the load that the bearing will need to support. Choose a bearing with the appropriate load-carrying capacity to ensure reliable operation.

  • Speed and Operating Conditions:

Consider the rotational speed of the application and the operating conditions, such as temperature, humidity, and exposure to contaminants. Different bearing types and materials are suited for varying speeds and environments.

  • Accuracy and Precision:

For applications requiring high accuracy and precision, such as machine tool spindles or optical instruments, choose high-precision bearings that can maintain tight tolerances and minimize runout.

  • Space Limitations:

If the application has limited space, choose miniature or compact ball bearings that can fit within the available dimensions without compromising performance.

  • Thrust and Radial Loads:

Determine whether the application requires predominantly thrust or radial load support. Choose the appropriate type of ball bearing (thrust, radial, or angular contact) based on the primary load direction.

  • Alignment and Misalignment:

If the application experiences misalignment between the shaft and housing, consider self-aligning ball bearings that can accommodate angular misalignment.

  • Mounting and Installation:

Consider the ease of mounting and dismounting the bearing. Some applications may benefit from features like flanges or snap rings for secure installation.

  • Lubrication and Maintenance:

Choose a bearing with appropriate lubrication options based on the application’s speed and temperature range. Consider whether seals or shields are necessary to protect the bearing from contaminants.

  • Environmental Conditions:

Factor in the operating environment, including exposure to corrosive substances, chemicals, water, or dust. Choose materials and coatings that can withstand the specific environmental challenges.

  • Bearing Material:

Select a bearing material that suits the application’s requirements. Common materials include stainless steel for corrosion resistance and high-carbon chrome steel for general applications.

  • Bearing Arrangement:

Consider whether a single-row, double-row, or multiple bearings in a specific arrangement are needed to accommodate the loads and moments present in the application.

By carefully evaluating these factors, engineers and designers can choose the most suitable ball bearing that aligns with the specific demands of the application, ensuring optimal performance, durability, and overall operational efficiency.

China wholesaler Custom Ball Joint Radial Spherical Plain Bearing   with Good qualityChina wholesaler Custom Ball Joint Radial Spherical Plain Bearing   with Good quality
editor by CX 2024-04-10

China supplier CZPT CZPT Truck Spare Parts Radial Ball Bearing 6312n Deep Groove Ball with Hot selling

Product Description

Structure: Deep Groove Material: carburizing steel
Type: Ball Application: Machinery
Brand Name: D&T DTC DTP Lubrication: Grease Oil
Bore Size: 15 – 1620 mm Feature: Long Life High Speed
Outside Diameter: 35 – 1870 mm Seal: OPEN ZZ 2RS RS
Model Number: all knds of models Cage: Steel Cage.copper Cage.nylon Cage
Precision Rating: P0 P6 P5 P4 P2 Product name: deep groove ball bearing
Seals Type: OPEN ZZ 2RS RS Certificate: ISO9001
Number of Row: Single Row Place of Origin: ZheJiang , China (Mainland), ZheJiang , China (Mainland)

Who we are?
The most professional truck and spare parts manufacturer in China;
The leading truck and spare parts exporter in China;
The most comprehensive truck and spare parts solution provider in China;
The most worry-free and most satisfactory and reputable supplier for you in China.
We can never let you down if you choose us.
Real reviews from our customers

FAQ
Q1: Can you also supply Heavy Truck parts?
A1: Yes, We specialize in Sinotruk, Shacman, such as HOWO, CZPT F3000,F2000, etc.

Q2: What’s the MOQ?
A2: Usually MOQ is according to different products,5 -10PCS/model for stock items.

Q3: What’s the delivery time?
A3: It takes 5-7 days if there is stock, and takes 1 month if there is no stock.

Q4: What’s the payment term?
A4: All by T/T, 30% in advance, 70% balance before shipping; option: L/C at sight.

Q5: What’s the packaging?
A5: Neutral packing or customer make packing
Our Services
– OEM Manufacturing is welcome: Product, Package…

– Customized design exclusive sealing products

– Specially designed for SINOTRUK, CZPT series

– Installation CZPT
– Product maintenance training

– Free sample for your test

– We will reply your inquiry in 24 hours

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: Omit
Aligning: Omit
Separated: Omit
Rows Number: Omit
Load Direction: Omit
Transport Package: Wooden Carton, Neutral Box or Plastic Outside Pack
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

What are the Common Signs of Wear or Damage in Ball Bearings that Indicate the Need for Replacement?

Ball bearings are subjected to wear and stress during operation, and over time, they may exhibit signs of damage or deterioration that warrant replacement. Recognizing these signs is crucial to prevent catastrophic failure and ensure safe and reliable operation. Here are the common signs of wear or damage in ball bearings:

  • Unusual Noise:

If you hear unusual grinding, clicking, or rumbling noises coming from the bearing during operation, it may indicate worn-out or damaged components. Unusual noise suggests that the bearing is no longer operating smoothly.

  • Vibration:

Excessive vibration in the machinery can be a sign of bearing wear. Vibrations can result from uneven wear, misalignment, or damaged components within the bearing.

  • Increased Temperature:

Higher operating temperatures than usual may indicate increased friction due to inadequate lubrication, wear, or other issues. Monitoring the bearing’s temperature can help identify potential problems.

  • Irregular Movement:

If you notice irregular movement, jerking, or sticking during rotation, it could be a sign that the bearing is no longer operating smoothly. This may be due to damaged rolling elements or raceways.

  • Reduced Performance:

If the machinery’s performance has decreased, it may be due to a compromised bearing. Reduced efficiency, increased energy consumption, or a decline in overall performance could be indicators of bearing wear.

  • Visible Wear or Damage:

Inspect the bearing for visible signs of wear, such as pitting, scoring, or discoloration on the rolling elements or raceways. Severe wear or damage is a clear indication that the bearing needs replacement.

  • Leakage or Contamination:

If there is evidence of lubricant leakage, contamination, or the presence of foreign particles around the bearing, it suggests that the seal or shield may be compromised, leading to potential damage.

  • Looseness or Excessive Play:

If you can feel excessive play or looseness when manually moving the bearing, it could indicate worn-out components or misalignment.

  • Reduced Lifespan:

If the bearing’s expected lifespan is significantly shorter than usual, it may be due to inadequate lubrication, excessive loads, or improper installation, leading to accelerated wear.

  • Frequent Failures:

If the bearing is consistently failing despite regular maintenance and proper use, it could indicate a chronic issue that requires addressing, such as inadequate lubrication or misalignment.

It’s important to conduct regular inspections, monitor performance, and address any signs of wear or damage promptly. Replacing worn or damaged ball bearings in a timely manner can prevent further damage to machinery, reduce downtime, and ensure safe and efficient operation.

ball bearing

Are there any Industry Standards or Certifications that Ball Bearings should Meet?

Yes, there are several industry standards and certifications that ball bearings should meet to ensure their quality, performance, and reliability. These standards help manufacturers, engineers, and customers assess the suitability of bearings for specific applications. Some of the key standards and certifications for ball bearings include:

  • ISO Standards:

The International Organization for Standardization (ISO) has developed a series of standards related to ball bearings. ISO 15 defines dimensions, boundary dimensions, and tolerances for radial bearings. ISO 281 specifies dynamic load ratings and calculation methods for bearings’ life calculations.

  • ABEC (Annular Bearing Engineering Committee) Ratings:

ABEC ratings are commonly used in North America to indicate the precision and performance of ball bearings. Ratings range from ABEC 1 (lowest precision) to ABEC 9 (highest precision). However, it’s important to note that ABEC ratings focus primarily on dimensional tolerances and do not encompass all aspects of bearing quality.

  • DIN Standards:

The German Institute for Standardization (Deutsches Institut für Normung, DIN) has published various standards related to ball bearings. DIN 625 covers dimensions for deep groove ball bearings, while DIN 616 provides guidelines for precision angular contact ball bearings.

  • JIS (Japanese Industrial Standards):

JIS standards are used in Japan and internationally to define the characteristics and dimensions of various products, including ball bearings. JIS B 1512 outlines the classification and dimensions of rolling bearings.

  • ASTM (American Society for Testing and Materials) Standards:

ASTM has standards that cover various aspects of bearing testing, performance, and materials. ASTM F2215, for instance, specifies the requirements for ball bearings used in surgical implants.

  • CE Marking:

CE marking indicates that a product complies with European Union health, safety, and environmental requirements. It may be required for bearings used in machinery intended to be sold within the EU market.

  • Industry-Specific Standards:

Various industries, such as aerospace, automotive, medical, and nuclear, have specific standards or certifications that bearings must meet to ensure safety, reliability, and compliance with industry-specific requirements.

  • Quality Management Systems:

Manufacturers that adhere to quality management systems, such as ISO 9001, demonstrate their commitment to consistent product quality and customer satisfaction. Certification to these systems indicates that the manufacturing process follows established protocols and best practices.

When selecting ball bearings, it’s important to consider the relevant standards and certifications that align with the application’s requirements. This ensures that the bearings meet recognized quality and performance criteria, ultimately contributing to reliable and efficient operation.

ball bearing

What are the Primary Benefits of Using Ball Bearings in Machinery and Equipment?

Ball bearings offer several primary benefits when used in machinery and equipment. Their design and functionality provide advantages that contribute to the efficient and reliable operation of various applications. Here are the key benefits:

  • Reduced Friction:

One of the primary benefits of ball bearings is their ability to minimize friction between moving parts. The rolling motion of the balls reduces the contact area and sliding friction, leading to smoother operation and less energy loss due to frictional heating.

  • Efficient Load Support:

Ball bearings are engineered to support both radial and axial loads, making them versatile for applications with multidirectional forces. This load-bearing capability allows machinery to handle different types of loads while maintaining performance and stability.

  • Smooth Rotation:

Ball bearings enable smooth and precise rotational movement. The rolling motion of the balls provides consistent motion with minimal resistance, ensuring that machinery operates smoothly and without jerks.

  • High-Speed Capability:

Due to their low friction and efficient rolling action, ball bearings are suitable for high-speed applications. They allow machinery and equipment to achieve and maintain high rotational speeds without excessive wear or heat buildup.

  • Reduced Wear and Maintenance:

The reduced friction in ball bearings leads to lower wear on components. This results in longer service intervals and reduced maintenance requirements, saving both time and maintenance costs.

  • Energy Efficiency:

By minimizing friction and reducing energy losses, ball bearings contribute to the overall energy efficiency of machinery. This is particularly important in applications where energy consumption is a concern.

  • Versatility:

Ball bearings come in various types, sizes, and configurations, allowing them to be used in a wide range of machinery and equipment. They can be customized to suit specific application requirements.

  • Reliability and Longevity:

Ball bearings are designed to withstand heavy loads and harsh operating conditions. Their durability and resistance to wear ensure reliable performance and an extended operational life.

  • Quiet Operation:

Ball bearings contribute to quiet machinery operation due to the smooth rolling motion of the balls. This is particularly important in applications where noise reduction is a consideration.

In summary, the primary benefits of using ball bearings in machinery and equipment include reduced friction, efficient load support, smooth rotation, high-speed capability, reduced wear and maintenance, energy efficiency, versatility, reliability, and quiet operation. These benefits collectively enhance the performance and longevity of machinery across various industries.

China supplier CZPT CZPT Truck Spare Parts Radial Ball Bearing 6312n Deep Groove Ball   with Hot sellingChina supplier CZPT CZPT Truck Spare Parts Radial Ball Bearing 6312n Deep Groove Ball   with Hot selling
editor by CX 2024-03-23

China Custom Single/Double Row Zz/2RS Deep Groove Ball Bearings Radial Spherical Insert Ball Bearing SA Sb Pillow Block UC Bearing Linear Bushing Tapered Roller Bearings with high quality

Product Description

 

I have all the models you need, these are just some of them, please contact us now

1.FREE SAMPLES:
contact us by email or trade manager, we will send the free sampls according to your request.

2. World Class Bearing:We provide our customers with all type of indigenous bearing with world class quality.

3. OEM or Non Stand Bearings: Any requirement for Non standard bearings is Easily Fulfilled by us due to
its vast knowledge and links in the industry.

4. Genuine products With Excellent Quality: Company has always proved the
100% quality products it provides with genuine intent.

5.After Sales Service and technical Assistance: Company provides after sales service and technical assistance
as per the customers requirement and needs.

6. Quick Delivery: The company provides just-in-time delivery with its streamlined supply chain.

7. Cost Saving: We provide long-life, shock-resistant and high reliability bearings with
excellent quality and better performance. Resulting in increased cost saving.

 

8.Attending customer queries promptly: We believe that if customer are satisfied

then it proves our worth well. Customers are always given quick support.

 

ball bearing

What are the Differences between Deep Groove Ball Bearings and Angular Contact Ball Bearings?

Deep groove ball bearings and angular contact ball bearings are two common types of ball bearings, each designed for specific applications and load conditions. Here are the key differences between these two types of bearings:

  • Design and Geometry:

Deep Groove Ball Bearings:

Deep groove ball bearings have a simple design with a single row of balls that run along deep raceways in both the inner and outer rings. The rings are usually symmetrical and non-separable, resulting in a balanced load distribution.

Angular Contact Ball Bearings:

Angular contact ball bearings have a more complex design with two rows of balls, oriented at an angle to the bearing’s axis. This arrangement allows for the transmission of both radial and axial loads, making them suitable for combined loads and applications requiring high precision.

  • Load Carrying Capacity:

Deep Groove Ball Bearings:

Deep groove ball bearings are primarily designed to carry radial loads. They can handle axial loads in both directions, but their axial load-carrying capacity is generally lower compared to angular contact ball bearings.

Angular Contact Ball Bearings:

Angular contact ball bearings are specifically designed to handle both radial and axial loads. The contact angle between the rows of balls determines the bearings’ axial load-carrying capacity. They can handle higher axial loads and are commonly used in applications with thrust loads.

  • Contact Angle:

Deep Groove Ball Bearings:

Deep groove ball bearings have no defined contact angle, as the balls move in a deep groove along the raceways. They are primarily designed for radial loads.

Angular Contact Ball Bearings:

Angular contact ball bearings have a specified contact angle between the rows of balls. This contact angle allows them to carry both radial and axial loads and is crucial for their ability to handle combined loads.

  • Applications:

Deep Groove Ball Bearings:

Deep groove ball bearings are commonly used in applications that primarily require radial loads, such as electric motors, pumps, and conveyor systems. They are also suitable for high-speed operation.

Angular Contact Ball Bearings:

Angular contact ball bearings are used in applications where both radial and axial loads are present, such as in machine tools, automotive wheel hubs, and aerospace components. They are especially useful for applications that require precise axial positioning and handling of thrust loads.

  • Limitations:

Deep Groove Ball Bearings:

Deep groove ball bearings are not as suitable for handling significant axial loads and may experience skidding under certain conditions due to their deep raceways.

Angular Contact Ball Bearings:

Angular contact ball bearings can experience increased heat generation and wear at higher speeds due to the contact angle of the balls.

In summary, the design, load-carrying capacity, contact angle, and applications differ between deep groove ball bearings and angular contact ball bearings. Choosing the appropriate type depends on the specific load conditions and requirements of the application.

Contact Angle: 45°
Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Multiple
Load Direction: Radial Bearing
Material: Bearing Steel
Customization:
Available

|

Customized Request

ball bearing

Can you Provide Examples of Industries where Ball Bearings are Crucial Components?

Ball bearings are essential components in a wide range of industries where smooth motion, load support, and precision are vital. Here are some examples of industries where ball bearings play a crucial role:

  • Automotive Industry:

Ball bearings are used in various automotive applications, including wheel hubs, transmissions, engines, steering systems, and suspension components. They provide reliable rotation and support in both passenger vehicles and commercial vehicles.

  • Aerospace Industry:

In the aerospace sector, ball bearings are found in aircraft engines, landing gear systems, control surfaces, and avionics equipment. Their ability to handle high speeds and precision is vital for aviation safety.

  • Industrial Machinery:

Ball bearings are integral to a wide range of industrial machinery, including pumps, compressors, conveyors, machine tools, printing presses, and textile machinery. They facilitate smooth operation and load distribution in these diverse applications.

  • Medical Equipment:

In medical devices and equipment, ball bearings are used in surgical instruments, imaging equipment, dental tools, and laboratory machinery. Their precision and smooth movement are crucial for accurate diagnostics and treatments.

  • Robotics and Automation:

Ball bearings are key components in robotic arms, automation systems, and manufacturing machinery. They enable precise movement, high-speed operation, and reliable performance in automated processes.

  • Renewable Energy:

Wind turbines and solar tracking systems utilize ball bearings to enable efficient rotation and tracking of the wind blades and solar panels. Ball bearings withstand the dynamic loads and environmental conditions in renewable energy applications.

  • Marine and Shipbuilding:

Ball bearings are used in marine applications such as ship propulsion systems, steering mechanisms, and marine pumps. They withstand the corrosive environment and provide reliable performance in maritime operations.

  • Heavy Equipment and Construction:

In construction machinery like excavators, bulldozers, and cranes, ball bearings support the movement of heavy loads and enable efficient operation in demanding environments.

  • Electronics and Consumer Appliances:

Consumer electronics like electric motors, computer hard drives, and household appliances rely on ball bearings for smooth motion and reliable operation.

  • Oil and Gas Industry:

In oil and gas exploration and extraction equipment, ball bearings are used in drilling rigs, pumps, and processing machinery. They handle the high loads and harsh conditions of this industry.

These examples demonstrate how ball bearings are indispensable components in various industries, contributing to the efficiency, reliability, and functionality of diverse mechanical systems and equipment.

ball bearing

What are the Primary Benefits of Using Ball Bearings in Machinery and Equipment?

Ball bearings offer several primary benefits when used in machinery and equipment. Their design and functionality provide advantages that contribute to the efficient and reliable operation of various applications. Here are the key benefits:

  • Reduced Friction:

One of the primary benefits of ball bearings is their ability to minimize friction between moving parts. The rolling motion of the balls reduces the contact area and sliding friction, leading to smoother operation and less energy loss due to frictional heating.

  • Efficient Load Support:

Ball bearings are engineered to support both radial and axial loads, making them versatile for applications with multidirectional forces. This load-bearing capability allows machinery to handle different types of loads while maintaining performance and stability.

  • Smooth Rotation:

Ball bearings enable smooth and precise rotational movement. The rolling motion of the balls provides consistent motion with minimal resistance, ensuring that machinery operates smoothly and without jerks.

  • High-Speed Capability:

Due to their low friction and efficient rolling action, ball bearings are suitable for high-speed applications. They allow machinery and equipment to achieve and maintain high rotational speeds without excessive wear or heat buildup.

  • Reduced Wear and Maintenance:

The reduced friction in ball bearings leads to lower wear on components. This results in longer service intervals and reduced maintenance requirements, saving both time and maintenance costs.

  • Energy Efficiency:

By minimizing friction and reducing energy losses, ball bearings contribute to the overall energy efficiency of machinery. This is particularly important in applications where energy consumption is a concern.

  • Versatility:

Ball bearings come in various types, sizes, and configurations, allowing them to be used in a wide range of machinery and equipment. They can be customized to suit specific application requirements.

  • Reliability and Longevity:

Ball bearings are designed to withstand heavy loads and harsh operating conditions. Their durability and resistance to wear ensure reliable performance and an extended operational life.

  • Quiet Operation:

Ball bearings contribute to quiet machinery operation due to the smooth rolling motion of the balls. This is particularly important in applications where noise reduction is a consideration.

In summary, the primary benefits of using ball bearings in machinery and equipment include reduced friction, efficient load support, smooth rotation, high-speed capability, reduced wear and maintenance, energy efficiency, versatility, reliability, and quiet operation. These benefits collectively enhance the performance and longevity of machinery across various industries.

China Custom Single/Double Row Zz/2RS Deep Groove Ball Bearings Radial Spherical Insert Ball Bearing SA Sb Pillow Block UC Bearing Linear Bushing Tapered Roller Bearings   with high qualityChina Custom Single/Double Row Zz/2RS Deep Groove Ball Bearings Radial Spherical Insert Ball Bearing SA Sb Pillow Block UC Bearing Linear Bushing Tapered Roller Bearings   with high quality
editor by CX 2023-08-10

China radial spherical plain bearing GE5C GE series joint ball bearings 5x14x6mm with Great quality

Type: Rod Conclude
Relevant Industries: Constructing Content Shops, Manufacturing Plant, Machinery Mend Outlets, Farms, Printing Outlets, Development works , Energy & Mining, business, printing equipment
Product Variety: GE5C
Precision Score: P0 P6 P5 P4
Design: GE5C
Substance: Chrome Metal
Feature: Lengthy Lifestyle Reduced Noise
Model: LLH
Sample: accessible
Lubrication: oil/grease
Certification: ISO9001:2008
Service: OEM ODM
Dimensions: 5*14*6 mm
Packaging Details: A: tube deal + outer carton + pallets B: one box + outer carton + pallests C: tube package deal + center box + outer carton + pallets D: In accordance to your request
Port: HangZhou,HangZhou…etc China principal port

Why pick us?1.Free of charge SAMPLES: get in touch with us by e mail or trade manager, we will deliver the free of charge samples in accordance to your ask for. 2.Planet Course Bearing: We provide our consumers with all kind of indigenous bearing with world course good quality.3.OEM or Non Stand Bearings: Any requirement for Non standard bearings is Effortlessly Fulfilled by us because of to its huge information and hyperlinks in the sector. 4.Legitimate items With Outstanding Top quality: Organization has often proved the 100% high quality merchandise it provides with legitimate intent.5.Right after Product sales Service and complex Help: Organization gives soon after sales service and technical help as for each the consumers prerequisite and requirements.6.Swift Supply: The business gives just-in-time delivery with its streamlined supply chain.7.Value Preserving: We supply prolonged-existence, shock-resistant and large reliability bearings with excellent top quality and betterperformance.Resulting in improved price conserving.8.Attending customer queries immediately: We imagine that if customer are happy then it proves our really worth nicely. Customers are usually provided rapid assist. Product Confront Merchandise SPECIFICATION

typejoint rod end bearing
model varietyGE5C
size5*fourteen*6 mm
mass(kg)0.005
applicationAutomotive.tractor.development Machinery.rolling Mill
featuresgood high quality,minimal noise,extended existence
serviceOEM and tailored provider
Transient introduction : Rod Conclude Bearing Info: Joint bearing composition than basically rolling bearing, which is dominated by an internal and outer sphere in a spherical outer ring. Bearings are usually used for reduce-speed swing motion (ie angular motion), the sliding surface area of the spherical condition, but also for tilting motion inside a certain variety of angles (ie, Delta ECMA-CA0807RS servo motor .75kW aligning movement), the supporting shaft misalignment and shaft housing bore when a big degree, nevertheless function.Attributes :one:Self-aligning2:Large temperature resistance3:carrying capability4:self-lubrication Solution Total Demonstrate Transport&Bundle A: tube package + outer carton + pallets B: single box + outer carton + pallets C: tube package deal + center box + outer carton + pallets D: According to your requestair/sea transportation&international express OUR Benefit OUR Provider one.Higher pace, Large Precision, Minimal Sound, Long Support Life2.Extensive Array of Applications3.Huge Inventories4.Little buy accept5.Competitive Rates and Substantial Quality6.A variety of Brands7.Demand small maintenance8. OEM is supported9. Our company insists on the “top quality first, credit score 1st” organization suggestions and our item specification is effectively-launched. We have a good track record in the global market place by our perfect service and sufficient source. Manufacturing facility AND Office HangZhou Maolei Bearing co.,Ltd is a company and trader specialised in the study, growth and manufacturing of bearings is situated in the “Spring Metropolis” HangZhou, with convenient transportation. The main goods of HangZhou Maolei bearing Co,.Ltd have a range of bearings ranging from deep groove ball bearings, Low friction ZZ steel shields 3x6x2.5 ceramic bearing self-aligning ball bearings, self-aligning roller bearings, wheel hub bearings, linear bearings, pillow block bearing, ceramic bearings, plastic bearings, cylindrical roller bearings, angular contact ball bearings, tapered roller bearings, thrust ball bearings, thrust roller bearings and needle roller bearings to spherical simple bearings and other items. All of our goods comply with worldwide top quality requirements ISO 9001 and are significantly appreciated in a selection of different markets during the planet. We insist on the philosophies of “integrity” and “pragmatic & CZPT organization”. We also adhere tothe” Efant YRT150 YRT100 YRT180 YRT200 Customized P2 P4 Substantial Precision Axial Radial Cam Indexer Rotary Table Bearing men and women-oriented”and”advancing” enterprise spirit . “Good quality 1st and clients utmost” is honored as our company idea. FAQ Q: Are you buying and selling business or manufacturer?A: We are the manufacture of bearings for a lot more than twenty years, “High quality is our tradition”.Q: How long is your shipping and delivery time?A: Generally it is 1-3 days if the products are in inventory. or it is 15-twenty days if the merchandise are not in inventory, it is in accordance toquantity.Q: What triggers bearing noise?A: Bearing noise is a function of the two the bearing and the way it is utilized. Some external aspects that affect bearing sounds consist of lubricant kind, too much bearing load, and incorrect installation. As soon as the irregular noise happened, you can contact our engineers, we will aid you locate the motives and supply the appropriate remedies.Q: What is your phrases of payment?A.a hundred%T/TB.thirty%T/T in advance,70% against copy of B/L(For massive purchase)C.Western UnionD.PaypalJust before you purchase online,make sure you contact us to get much more discount !

Types of Ball Bearings

There are several types of ball bearings: Double-row angular contact, Four-point contact, Self-aligning, and Ceramic hybrid. Here’s a brief description of each. For more information, read our article about Double-row angular contact ball bearings. You’ll be better informed about how they’re made. Also, learn about how the cages that hold the balls in place are secured with rivets.

Double-row, angular-contact bearing

Double-row, angular-contact ball bearings are similar in their contact surfaces in one direction, and the two pairs of bearings are installed axially opposite to one another. This design allows them to support combined loads in axial and radial directions. These types of bearings are used for high-precision, high-speed applications. They can be used in everything from turbines to dentistry equipment. Double-row, angular-contact bearings are available at Grainger, as are single-row versions.
Double-row, angular-contact ball bearings are a popular option for applications where high precision and high speed are required. The design features of these bearings are ideal for applications with axial space restrictions. In contrast, they are smaller than two single-row angular-contact bearings and are available in steel, polyamide, or brass cages. Whether you need a cage for high speed or hard operating conditions is up to you. If you are unsure about the right cage for your application, contact Schaeffler.
Single-row angular-contact ball bearings are the most common type of bearings. Double-row bearings are also available with a shielded outer ring, which protects the balls inside the bearing from external contaminants. Because these double-row bearings are a good choice for applications requiring high performance, they are often the most affordable option. They offer similar performance as single-row bearings but are much more rigid.
Preloading is a key performance characteristic for double-row angular-contact ball bearings. Preloading can decrease the service life of double-row angular-contact ball bearings by up to 380 percent. Alternatively, you can preload double-row angular-contact ball bearings by placing spacers between their outer rings. Good double-row angular-contact bearing installation will increase working accuracy and bearing life.
bearing

Four-point contact ball bearing

The Four Point Contact Ball Bearing Market can be segmented into three types: 35 Degree, 45 Degree, and Other. The 35 Degree segment is expected to witness the fastest growth over the next few years, owing to its increased operational speed and competence in axial and radial axis load handling. Other types of four-point contact ball bearings include the Miniature and Deep Groove varieties. These are widely used in automobiles, aerospace, and other industries.
These bearings are designed for oil-free screw compressors, and they feature an outer-ring guided brass cage to reduce friction and increase running accuracy. In addition, they have lower maintenance costs compared to conventional bearings. However, they have a higher mean roughness value than their counterparts. High-speed operations require high-speed bearings that can withstand fast speed changes. This is because of the higher friction rate, which results from four-point contact.
The Four-Point Contact Ball Bearing is a highly versatile product, as it can handle radial, thrust, and moment loads. Because of this, it is often the first choice for slow to moderate-speed applications. This design also has a simplified assembly process, requiring only a single double-half-turn to install. It is the first choice of many automotive OEMs because it is extremely efficient. If you want a ball bearing with these benefits, you should contact a local bearing company.
The Four-Point Contact Ball Bearing Market will continue to grow despite a tough economy and volatile trade conditions. Demand for automotive and aerospace components is expected to grow alongside a variety of technological advancements. Meanwhile, demand for energy-efficient products will continue to increase with changes in trade policy, an imbalance in the supply-side ecosystem, and geopolitical risk. And while all these factors will continue to drive the market growth, a few challenges are worth considering.
The Four-Point Contact Bearing is designed with the same basic structure as its two-point counterpart. In a four-point contact ball bearing, one ball can have four distinct points of contact with two rings. Two of these contact points may be in diagonal position. The two remaining contact points change position and accommodate radial loads. Consequently, the Four-Point Contact Bearing is more flexible and robust than its two-point counterparts.
bearing

Self-aligning ball bearing

The self-aligning ball bearing is an incredibly useful tool in many industries. This type of bearing has a sealing lip that makes contact with a smooth chamfer on the inner ring. Because of the self-aligning nature of these bearings, they are not prone to misalignment. They can withstand temperatures ranging from -30°C to 120°C and should not be heated prior to installation.
A self-aligning ball bearing is an elastomer-based spherical-shaped bearing with two rows of rolling elements. These bearings can accommodate large radial loads, and their outer ring raceway is curved to provide a spherical effect. The inner ring, or cage, can be either cylindrical or conical. The inner diameter of a self-aligning ball bearing is normally cylindrical, but some are conical. They typically have three oil holes.
When choosing a self-aligning ball bearing, look for a model with a large enough bearing diameter to accommodate the shaft’s bending. Self-aligning bearings may also be interchangeable with standard ball bearing assemblies. You can find individual values in manufacturer catalogues. These bearings are useful in limited applications, although they are not necessarily ideal for everything. For example, in applications where combined loads are the main concern, self-aligning ball bearings should only be used if the application requires minimal misalignment.
A self-aligning ball bearing is a highly-efficient, energy-efficient solution for a variety of applications. It is a simple, low-maintenance solution that makes your life easier. Its unique outer raceway allows restraining springs to absorb the deflection that is common in other bearings. The result is a cooler, smoother running vehicle. It also helps prevent misalignment, which makes it ideal for use in many applications.
The SKF self-aligning ball bearing is an excellent choice for applications involving heavy deflection of the shaft. They are the lowest-friction bearing available. Their steel plate reinforced seals prevent them from separating from the shaft during operation. They are also resistant to oil, making them the perfect solution for high-speed applications. In addition to this, they are designed to work in a wide range of temperatures.
bearing

Ceramic hybrid ball bearing

A hybrid ball bearing made from a combination of steel and ceramics is a good option for high-speed applications requiring electrical isolation. This combination offers an extended lifespan and minimal electrical corrosion or seizure risk. In addition, the hybrid ball bearings have less friction than steel bearings and can operate at low speeds. To learn more about this hybrid type of bearing, continue reading. We’ll also discuss how it can help your application.
Full ceramic balls are generally harder than steel, but they do have lower density, meaning they’re not subject to the same high centrifugal forces as steel balls. These benefits make ceramic ball bearings much more durable, with long lifespans. Both full and hybrid ceramic ball bearings are available from CZPT. Read on to learn more about each type. Here’s a look at some of the benefits of each. You’ll be pleasantly surprised.
A hybrid ball bearing consists of steel inner and outer rings and a ceramic ball. It can withstand high speeds and loads, but it’s also designed to operate in extreme temperatures. This hybrid ball bearing also requires minimal lubrication and is suitable for a variety of applications. Because of its unique characteristics, hybrid bearings are lightweight and hard, and they spin faster than steel balls. But how do you choose the right one for your application?
A ceramic ball bearing is better than a steel one for many applications. Its greater speed capability and lower friction allow it to operate at higher speeds than steel balls. It is also less sensitive to fluctuations in lubrication conditions than steel balls. They also tend to be cheaper, so it makes sense to invest in one. It’s worth your while. They last longer, and they don’t require a run-in period.
A hybrid ball bearing is the best choice for electric spindles with high speed and heavy loads. A hybrid ceramic ball bearing has the advantage of low heat and high stiffness, and can operate at high speeds and loads. This thesis explores the dynamic characteristics of a hybrid ceramic ball bearing, including analysis calculations and experiment verification. The results provide reliable data and lay the foundation for professional spindle optimum design tests. It is a worthy addition to any machine shop.

China radial spherical plain bearing GE5C GE series joint ball bearings 5x14x6mm     with Great qualityChina radial spherical plain bearing GE5C GE series joint ball bearings 5x14x6mm     with Great quality
editor by czh 2023-02-20